Math 118 Common Final Rubric for both versions

In general, I am not too strict on rounding (unless it's a problem like number 8). If you are going to take off points for rounding errors, I would suggest not making it too many points.

1. (a) 1.5 points for correct slope. 1.5 points for correct y-intercept
(b) 1.5 points for correct initial value. 1.5 points for correct growth factor
(c) 1.5 points for correct setup, 1 point for correct value for $t, 0.5$ points for giving correct year
2. (a) 2 points for setting up formula. 1 point for correct answer
(b) 2 points for setting up formula. 1 point for correct answer
(c) 2 points for setting up formula. 1 point for correct answer
3. (a) 1 point for each of the values
(b) 2 points for the correct value for k, and 1 point for writing the function in the new form
(c) 1 point for selecting decay
4. 1.5 points for the domain and 1.5 points for the range
5. 3 points for correct setup, 3 points for process that leads to the correct answer
6. (a) If $y=A \cos (B t)+k$, 1 point for $A, 1$ point for identifying that it is cosine, 1 point for B and 1 point for k
(b) 1 point for setting up initial equation. 2 points for solving for t and 1 point for evaluating.
7. If $y=A \cos (B t)+k, 2$ points for $A, 2$ points for identifying that it is cosine, 2 points for B and 2 points for k
8. 3 points per part
9. 1.5 points for the first identity, 1.5 for the second identity, 1.5 points for the third identity, and 1.5 points for putting it all together/determining it is true
10. 6 points
11. (a) 2 points for correct value, 1 point for explanation
(b) 3 points
(c) 2 points for correct value, 1 point for explanation
12. 4 points per part
13. 3 points for each missing side/angle

Version A Answers:

1. (a) $P=100 t+1500$
(b) $P=1500(1.16)^{t}$
(c) $t \approx 8$, so 2031
2. (a) $\$ 9380.67$
(b) $\$ 9431.46$
(c) $\$ 9449.01$
3. (a) Initial value is 4.2 . Growth factor is 0.182 . Growth rate is -0.818
(b) $4.2 e^{-1.70 t}$
(c) decay
4. The domain is all real numbers. The range is all positive numbers
5. $t \approx 8.66$ hours
6. (a) $y=4.6 \cos \left(\frac{2 \pi}{13} t\right)+5$
(b) $t=\frac{13 \cos ^{-1}\left(\frac{2}{4.6}\right)}{2 \pi}, t \approx 2.32$ hours after midnight
7. $y=2 \cos (\pi t)+1$
8. (a) $\frac{4}{5}$
(b) $\frac{\sqrt{45}}{7}$
(c) $\frac{-6+4 \sqrt{45}}{35}$
(d) $\frac{-8-3 \sqrt{45}}{35}$
9. Yes, it is true
10. $x \approx 0.35$ miles
11. (a) 3291. This is the population of the town in 2026
(b) $\frac{\ln \left(\frac{P}{600}\right)}{\ln (1.328)}$
(c) $t \approx 4$. In 2024, the population will hit 2000
12. (a) 11
(b) $\ln (6 x-13)$
13. $a=14.52, B=29.25^{\circ}, C=19.75^{\circ}$

Version B Answers:

1. (a) $P=200 t+1600$
(b) $P=1600(1.12)^{t}$
(c) $t \approx 10$, so 2033
2. (a) $\$ 9004.38$
(b) $\$ 9098.66$
(c) $\$ 9131.77$
3. (a) Initial value is 2.1 . Growth factor is 0.364 . Growth rate is -0.636
(b) $2.1 e^{-1.01 t}$
(c) decay
4. The domain is all real numbers. The range is all positive numbers
5. $t \approx 11.55$ hours
6. (a) $y=2.1 \cos \left(\frac{2 \pi}{13} t\right)+3.5$
(b) $t=\frac{13 \cos ^{-1}\left(\frac{0.5}{2.1}\right)}{2 \pi}, t \approx 2.75$ hours after midnight
7. $y=2 \cos (\pi t)+1$
8. (a) $\frac{3}{5}$
(b) $\frac{\sqrt{77}}{9}$
(c) $\frac{-8+3 \sqrt{77}}{45}$
(d) $\frac{-6-4 \sqrt{77}}{45}$
9. Yes, it is true
10. $x \approx 0.35$ miles
11. (a) 1871. This is the population of the town in 2026
(b) $\frac{\ln \left(\frac{P}{500}\right)}{\ln (1.246)}$
(c) $t \approx 6$. In 2026, the population will hit 2000
12. (a) 37
(b) $\ln (18 x-17)$
13. $a=14.52, B=29.25^{\circ}, C=19.75^{\circ}$
