Math 118 Common Final Rubric for both versions

In general, I am not too strict on rounding (unless it's a problem like number 8). If you are going to take off points for rounding errors, I would suggest not making it too many points.

- 1. (a) 1.5 points for correct slope. 1.5 points for correct *y*-intercept
 - (b) 1.5 points for correct initial value. 1.5 points for correct growth factor
 - (c) 1.5 points for correct setup, 1 point for correct value for *t*, 0.5 points for giving correct year
- 2. (a) 2 points for setting up formula. 1 point for correct answer
 - (b) 2 points for setting up formula. 1 point for correct answer
 - (c) 2 points for setting up formula. 1 point for correct answer
- 3. (a) 1 point for each of the values
 - (b) 2 points for the correct value for k, and 1 point for writing the function in the new form
 - (c) 1 point for selecting decay
- 4. 1.5 points for the domain and 1.5 points for the range
- 5. 3 points for correct setup, 3 points for process that leads to the correct answer
- 6. (a) If $y = A\cos(Bt) + k$, 1 point for *A*, 1 point for identifying that it is cosine, 1 point for *B* and 1 point for *k*
 - (b) 1 point for setting up initial equation. 2 points for solving for *t* and 1 point for evaluating.
- 7. If $y = A\cos(Bt) + k$, 2 points for *A*, 2 points for identifying that it is cosine, 2 points for *B* and 2 points for *k*
- 8. 3 points per part
- 9. 1.5 points for the first identity, 1.5 for the second identity, 1.5 points for the third identity, and 1.5 points for putting it all together/determining it is true
- 10. 6 points
- 11. (a) 2 points for correct value, 1 point for explanation
 - (b) 3 points
 - (c) 2 points for correct value, 1 point for explanation
- 12. 4 points per part
- 13. 3 points for each missing side/angle

Version A Answers:

- 1. (a) P = 100t + 1500
 - (b) $P = 1500(1.16)^t$
 - (c) $t \approx 8$, so 2031
- 2. (a) \$9380.67
 - (b) \$9431.46
 - (c) \$9449.01
- 3. (a) Initial value is 4.2. Growth factor is 0.182. Growth rate is -0.818
 - (b) $4.2e^{-1.70t}$
 - (c) decay
- 4. The domain is all real numbers. The range is all positive numbers
- 5. $t \approx 8.66$ hours

6. (a)
$$y = 4.6 \cos(\frac{2\pi}{13}t) + 5$$

(b) $t = \frac{13 \cos^{-1}(\frac{2}{4.6})}{2\pi}, t \approx 2.32$ hours after midnight
7. $y = 2\cos(\pi t) + 1$
8. (a) $\frac{4}{5}$
(b) $\frac{\sqrt{45}}{7}$
(c) $\frac{-6 + 4\sqrt{45}}{7}$

(c)
$$\frac{35}{35}$$

(d) $\frac{-8 - 3\sqrt{45}}{35}$

- 9. Yes, it is true
- 10. $x \approx 0.35$ miles
- 11. (a) 3291. This is the population of the town in 2026

(b)
$$\frac{\ln(\frac{P}{600})}{\ln(1.328)}$$

- (c) $t \approx 4$. In 2024, the population will hit 2000
- 12. (a) 11
 - (b) $\ln(6x 13)$
- 13. $a = 14.52, B = 29.25^{\circ}, C = 19.75^{\circ}$

Version B Answers:

- 1. (a) P = 200t + 1600
 - (b) $P = 1600(1.12)^t$
 - (c) $t \approx 10$, so 2033
- 2. (a) \$9004.38
 - (b) \$9098.66
 - (c) \$9131.77
- 3. (a) Initial value is 2.1. Growth factor is 0.364. Growth rate is -0.636
 (b) 2.1e^{-1.01t}
 - (c) decay
- 4. The domain is all real numbers. The range is all positive numbers
- 5. $t \approx 11.55$ hours

6. (a)
$$y = 2.1 \cos(\frac{2\pi}{13}t) + 3.5$$

(b) $t = \frac{13 \cos^{-1}(\frac{0.5}{2.1})}{2\pi}, t \approx 2.75$ hours after midnight
7. $y = 2\cos(\pi t) + 1$
8. (a) $\frac{3}{5}$
(b) $\frac{\sqrt{77}}{9}$
(c) $\frac{-8 + 3\sqrt{77}}{45}$
(d) $\frac{-6 - 4\sqrt{77}}{45}$

- 9. Yes, it is true
- 10. $x \approx 0.35$ miles
- 11. (a) 1871. This is the population of the town in 2026

(b)
$$\frac{\ln(\frac{P}{500})}{\ln(1.246)}$$

- (c) $t \approx 6$. In 2026, the population will hit 2000
- 12. (a) 37
 - (b) $\ln(18x 17)$
- 13. $a = 14.52, B = 29.25^{\circ}, C = 19.75^{\circ}$